Entrapment of the posterior interosseous nerve (PIN) is the third most common nerve compression syndrome affecting the forearm, behind carpel tunnel syndrome (median nerve) and cubital tunnel syndrome (ulna nerve). It is commonly seen in people performing repetitive tasks such as baristas, keyboard/mouse operators and assembly workers.

The radial nerve divides at the elbow into superficial and deep branches. The deep branch is the posterior interosseous nerve which curves around the radial neck entering the deep posterior lateral aspect of the forearm before entering the supinator muscle under a fibrous arch known as the arcade of Frohse. It runs though the supinator muscle, dividing into its terminal motor branches as soon as its exits. It is within the supinator that it is usually compressed.

The motor supply is to the wrist extensors (except extensor carpi radialis longus), the finger extensors, extensor pollicis longus and brevis, abductor pollicis longus and the supinator.

The sensory supply is to the dorsal wrist only, there is no supply to the skin.

Entrapment usually occurs with repetitive activities and concurrent hypertrophy of the supinator muscle leading to a slowly progressive compression of the nerve. Although occasionally there can be other causes such a ganglion from the proximal radio-ulna joint.

The patient usually complains of pain in the posterior-lateral aspect of the forearm and because of this the syndrome is often confused with lateral epicondylitis. The pain in PIN entrapment however is more distal over the radial tunnel (P on image 1) rather than over the common extensor origin (L on image 1). Also pain in lateral epicondylitis is exacerbated by resisted wrist and middle finger extension where as PIN nerve entrapment is not.

To confuse things further they can coexist.

The pain is initially intermittent associated with repetitive activity and over time may become constant and more neuralgic in nature. Occasionally patients complain of dorsal wrist pain and exacerbation with resisted supination. They are generally tender over the radial tunnel. Muscular weakness only occurs late in the syndrome.

Because there is no associated paresthesia diagnosis is often difficult.

Nerve conduction studies and MRI scans are helpful if they are positive but a negative result (which is common) on either or both of theses modalities does not exclude the diagnosis.

The most accurate diagnostic modality is relief of symptoms (even temporarily) with an ultra sound guided injection of local anaesthetic and cortico- steroid into the radial tunnel by a skilled radiologist.

If symptoms recur after injection the patient is best treated by release of the nerve from the supinator (refer image 2).

Dr Ivan Popoff
Calcific Tendonitis

Calcific tendonitis is a less common cause of shoulder pain.

It is a self-limiting condition where a portion of the rotator cuff tendons calcifies and then over time spontaneously absorbs. Patients often present with a traumatic intense shoulder pain that may mimic an infection. Once the diagnosis is made with a simple x-ray, patients can be reassured that this condition resolves completely on its own, and is easily managed non-operatively in most cases.

Calcific Tendinitis typically occurs in patients aged 30 to 60 years. Studies have shown a possible relationship with hormonal abnormalities yet the cause of this condition is unknown. As the condition progresses through stages of forming a calcified lesion and then resorption and resolution of the lesion, patients can present with pain at any time during these stages.

STAGES OF CALCIFIC TENDONITIS:

There are three main stages that occur with calcification: precalcific, calcific, and postcalcific. In the precalcific phase the tendon cells transform into cartilage cells. The calcific stage can be subdivided into three phases: formative, resting, and resorptive.

Formative phase: calcium crystals are deposited into the tendon. During this phase the lesion is a chalk-like material. In the resting phase, the deposition of calcium stops and the lesion remains inactive. Pain that occurs during this phase is mild.

Resorptive phase: begins when the lesion spontaneously begins to resorb. The creamy, toothpaste like material is under pressure. Pain can be spontaneous and very severe, causing difficulty sleeping at night and rest pain. On radiographs, the lesion may look fluffy and more ill-defined. The intense pain occurs when the lesion causes pressure and exudes into the subacromial space, causing bursitis and inflammation.

INVESTIGATIONS:

- X-rays will demonstrate calcium deposits and are diagnostic. Initial radiographs should include AP and Y views in the scapular plane, as well as an axillary view.
- MRI can be helpful to look for other pathology, such as rotator cuff tears, especially when other pathology is suspected to be causing symptoms.
- Ultrasound can be useful in identifying the presence and location of deposits.

MANAGEMENT:

Initial treatment should be non-surgical, consisting of NSAIDs, physical therapy, and corticosteroid injections. This treatment has been shown to be successful 73% of the time.

Subacromial cortisone injection is very effective in reducing the intense pain. Injections and NSAIDS are often all that is needed to manage the pain until the lesion fully resorbs by its natural process. Alternative options to assist in removing the lesion include ultrasound guided needle lavage (UGNL), extracorporeal shock-wave therapy (ESWT), and surgery.

Extracorporeal Shock-Wave Therapy:

ESWT involves the use of a monophasic pressure pulse to affect a local injury to the tendon. ESWT has recently become a popular treatment for calcific tendinitis of the shoulder, although there is only moderate evidence in the literature supporting its use.

Surgery: Surgery is usually effective during the formative phase when non-operative therapies have failed to help symptoms. During the resorptive phase, natural mechanisms usually succeed in removing the deposit, and surgery is rarely indicated. With arthroscopy, the lesion is identified and an incision made in the outer rotator cuff. A curette is used to remove the calcific material in full. A subacromial decompression is performed if there are signs of impingement present. The success rate of surgical treatment is 75% to 90%.

SUMMARY:

1) Calcific Tendinitis is a common cause of shoulder pain that occurs spontaneously without injury.
2) Patients should be counselled that the condition usually resolves on its own.
3) Initial treatment should consist of NSAIDS, physio and cortisone injections.
4) UGNL or ESWT can be considered in patients when initial treatments have failed to help.
5) Surgery is considered when non-operative treatments fail to help after 6 months.

Dr Todd Gothelf
KEY EXAMINATION POINTS

Knee Examination Series (Part 2)

EXAMINING THE FRONT OF THE KNEE

Having examined the patient for an effusion, meniscal tear and instability we move on to the front of the knee.

The patient may describe knee pain with walking up or down slopes or stairs or with running or jumping. They may have the sensation that the patella moves out of joint, clicking, grinding or locking and may feel pain when sitting for extended periods of time.

Inspect the front of the knee with the patient standing looking for a high (alta) or low (baja) patella which may lead to instability or overuse respectively.

In the standing position, ask the patient to contract their quadriceps and identify the size and tone of the VMO (vastus medialis obliquus, medial and superior to the patella). Ask the patient to carefully squat – initially with both legs, then with one leg. A painful squat is significant. As a general rule patients who have pain squatting at less than 90 degrees of knee flexion have difficulty negotiating stairs. On the whole the patient should avoid lunges and deep squats which tend to aggravate this condition.

With the patient sitting, look for ‘grasshopper’ patellae indicating lateral tracking and perhaps instability. The tibial tubercle may be very prominent from previous Osgood Schlatters disease (Adolescents may have apophysitis with fragmentation of the accessory ossification centre of the tibial tubercle and while it is painful at the time, it results in a painless lump in the long term).

Listen and feel for crepitus as the patient takes their knee through a range of motion. Check the other knee as this may be bilateral and asymptomatic. Check also for lateral tracking of the patella as the knee reaches full extension.

Palpate each structure around and attached to the patella. The patellar tendon may be tender at its insertion onto the patella (usually medially) or more distally (patella tendonitis or Sinding-Larsen-Johansson syndrome). The patient will complain of pain in the patellar tendon and pain with resistance against extension or performing a squat. The patella tendon may be the site of repetitive strain injuries (jumper’s knee) and is often associated with tight hamstrings.

Palpate the patella itself, there may be tenderness of the bone or more likely the soft tissues attached medially which tear with a patella dislocation.

Patellar tilt: Hold the edge of the patella between your thumb and index finger and find the axis of the patella. See if this is parallel to the horizontal plane and try to lift first the medial and then the lateral side of the patella. An increased tilt medially can be caused by a medial retinacular tear and a decreased tilt laterally can be associated with patella instability.

The patella may be said to squint (convergent or divergent squint). Broadly speaking, a convergent squint tends to occur in anterior knee pain syndrome, while a divergent squint would be more likely in recurrent dislocation.

APPREHENSION SIGN

The patient is positioned supine, with the knee flexed between 0° and 30°.

The examiner gently but firmly pushes the patella in a lateral direction. The patient usually stops the examiner because they are worried the patella may dislocate (In this position the patella is at its highest point in the femoral groove (trochlea). Pressure from the medial side will push the patella in a lateral direction, causing it to sublux or dislocate from the groove).

In the past very large surgery was required to correct patella instability, almost always the operation can now be corrected with an MPFL (medial patellofemoral ligament) reconstruction which is a relatively small operation with a much faster recovery time.

CONCLUSION

Non surgical treatment is the mainstay of treatment for most anterior knee pain with a hamstring stretching quadriceps strengthening programme. If this fails surgery may be indicated.

Dr Doron Sher
Orthopaedic Surgeons and their Interests

CONCORD
47-49 Burwood Road Concord NSW 2137
Tel: 02 9744 2666

Dr Todd Gothelf Foot & Ankle, Shoulder
Dr David Lieu Knee, Shoulder and Elbow
Dr John Negrine Foot & Ankle (Adult)
Dr Rodney Pattinson Paediatrics and General Orthopaedics
Dr Doron Sher Knee, Shoulder and Elbow
Dr Kwan Yeoh Hand, Upper Limb and General Orthopaedics

PENRITH
Suite 5B, 119-121 Lethbridge Street Penrith NSW 2750
Tel: 02 4721 7799

Dr Todd Gothelf Foot & Ankle, Shoulder
Dr Kwan Yeoh Hand, Upper Limb and General Orthopaedics

RANDWICK
160 Belmore Road Randwick NSW 2031
Tel: 02 9399 5333

Dr Jerome Goldberg Shoulder
Dr Todd Gothelf Foot & Ankle, Shoulder
Dr Andreas Loefler Spine, Trauma, Hip and Knee
Dr John Negrine Foot & Ankle (Adult)
Dr Rodney Pattinson Paediatrics and General Orthopaedics
Dr Ivan Popoff Shoulder, Knee and Elbow
Dr Doron Sher Knee, Shoulder and Elbow

HURSTVILLE
Waratah Private 29-31 Dora Street Hurstville NSW 2220
Tel: 02 9580 6066

Dr Jerome Goldberg Shoulder
Dr Todd Gothelf Foot & Ankle, Shoulder
Dr Andreas Loefler Spine, Trauma, Hip and Knee
Dr John Negrine Foot & Ankle (Adult)
Dr Rodney Pattinson Paediatrics and General Orthopaedics
Dr Ivan Popoff Shoulder, Knee and Elbow
Dr Allen Turnbull Hip and Knee
Dr Kwan Yeoh Hand, Upper Limb and General Orthopaedics

BELLA VISTA
Suite 116, Building B, 20 Lexington Drive
Bella Vista NSW 2153 Tel: 9744 2666

Dr Kwan Yeoh Hand, Upper Limb and General Orthopaedics

ORTHOSPORTS is an RACGP ACCREDITED ACTIVITY PROVIDER

- Shoulder Pain & Injury Management – 40 Cat 1 points
- Management of Knee Arthritis – 40 Cat 1 points
- Knee Sports Injuries – 40 Cat 1 points

To register your interest in future Category 1 modules or for further information please email education@orthosports.com.au

LATEST ORTHOPAEDIC UPDATES 2017
Saturday, 4th November, 2017
University of NSW – 8am to 12.30pm

For more information visit our website or email education@orthosports.com.au

Should you wish to unsubscribe please email education@orthosports.com.au or contact one of our offices directly.

www.orthosports.com.au

ARTHROSCOPY | JOINT REPLACEMENT | LIGAMENT RECONSTRUCTION | PHYSIOTHERAPY | SPORT & EXERCISE MEDICINE